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ABSTRACT: We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial
resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar
radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between
9000 and 60 000 weather stations. Weather station data were interpolated using thin-plate splines with covariates including
elevation, distance to the coast and three satellite-derived covariates: maximum and minimum land surface temperature as well
as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on
station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 ∘C), particularly for
areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions
of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast
to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting
the best performing model for each region and variable. Global cross-validation correlations were≥ 0.99 for temperature
and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only
marginally improved by use of satellite covariates highlights the importance having a dense, high-quality network of climate
station data.
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1. Introduction

Spatially interpolated gridded climate data, here referred to
as ‘climate surfaces’, are used in many areas of work, par-
ticularly in the environmental, agricultural and biological
sciences. For many applications, data at a high (≤1 km2)
spatial resolution are preferred to capture environmental
variation that can be lost at lower spatial resolutions, par-
ticularly in mountainous and other areas with steep cli-
mate gradients. Hijmans et al. (2005) provided climate sur-
faces, referred to as the ‘WorldClim version 1 database’,
for global land areas (excluding Antarctica), consisting
of long-term average monthly temperature and precipi-
tation. Here we present a refined and expanded version
of this database. Over the past decade, there has been an
increase in the number of climate stations for which data
is available, including a number of stations located at high
latitudes and elevations. Furthermore, while the original
dataset was limited to monthly precipitation and temper-
ature, we also included solar radiation, windspeed and
vapour pressure, which may be necessary to model impor-
tant processes such as plant growth. These variables were
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previously only available at a lower spatial resolution (10
arc-minutes) and for a different base period (New et al.,
2002).

We also wanted to improve estimates for areas with low
station density and in areas with unusual gradients (inver-
sions) and sharp gradients such as rain-shadows or abrupt
temperature changes due to ocean-land transitions (Hij-
mans et al., 2005; Daly et al., 2008). Estimates for regions
where weather station density (or quality) is insufficient to
resolve local gradients may be improved using remotely
sensed meteorological data from satellites (Jin and Dick-
inson, 2010; Mildrexler et al., 2011). Gridded time-series
of meteorological variables such as land surface tem-
perature (LST; the earth’s ‘skin temperature’) and cloud
cover are now available from a number of satellite-borne
instruments, and these have the potential to inform esti-
mates of the variables of interest. Previous efforts to incor-
porate satellite data in climate interpolations have been
focused on interpolating daily temperature data for limited
spatial and temporal extents (e.g. Kilibarda et al., 2014).
We examined the utility of including satellite-derived and
other covariables (distance to coast, extraterrestrial solar
radiation) for interpolating several climate variables across
global land areas.

We compiled monthly average climate data for weather
stations from a large number of global, regional, national,
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and local sources, mostly for the 1970–2000 period
(Table 1). Utilizing satellite-derived data and other covari-
ables, we interpolated these data using the thin-plate
smoothing spline algorithm implemented in ANUSPLIN
(Hutchinson and Xu, 2013) and created global climate
surfaces for monthly precipitation and minimum, mean,
and maximum temperature, solar radiation, wind speed
and vapour pressure (that is, 12 gridded surfaces per vari-
able). Our surfaces have a 30 arc-seconds spatial resolu-
tion; this is equivalent to about 0.86 km2 at the equator (and
less elsewhere) and commonly referred to as ‘1-km’ spa-
tial resolution. The data are referred to as the ‘WorldClim
version 2’ database and are available for download from
http://worldclim.org/.

2. Methods

2.1. Climate data compilation and processing

Weather station data were obtained from multiple sources,
and are summarized in Table 1 and Table S1, Sup-
porting information. Station data were checked for cor-
respondence between their reported elevation and the
elevation obtained from a global elevation raster data
(Hijmans et al., 2005). Stations with large deviations (
>several 100 m) between reported and actual elevation
were mapped and evaluated relative to available geo-
graphic information and neighbouring station data. We
checked the coordinates of these stations by searching for
the station name in Google Earth (Google Inc., 2013) and
elsewhere. Unless the data of either the elevation or loca-
tion could be corrected with a high degree of certainty, the
stations with large elevation discrepancies were left out of
the analysis. Further quality control was done by inspect-
ing outliers in the interpolation (see below).

Average temperature was calculated as the mean of
maximum and minimum of tabulated station-wise monthly
temperatures. If vapour pressure was not reported, but
dew-point temperature was available, vapour pressure was
calculated by the following formula (Tetens, 1930; vapour
pressure equals saturated vapour pressure at dew-point
temperature):

svp = 0.611 × 10
7.5×T

237.7+T

where svp is saturated vapour pressure (in hPa) and T is
the dew-point temperature (∘C).

If neither vapour pressure nor dew-point temperature
were recorded, but relative humidity was available, vapour
pressure was calculated as:

vp = rh ∗
svp (T)

100

Where rh is mean relative humidity, T is mean temper-
ature (∘C) and svp is from the formula above. If multi-
ple derived values for vapour pressure were available for
a station, preference was given to dewpoint-temperature
derived estimates. In all cases, if directly observed data was
available for stations identified as duplicates, derived data
was not used. Approximately 12% (1239 records) of data

used came from directly reported vapour pressure, the rest
being derived from either dew-point temperature (79%) or
relative humidity (8%).

2.2. Data aggregation and weighting

The climate data sources used included databases with
long-term average values (WMO, 1996; FAO, 2001),
time-series of monthly averages by year (Lawrimore et al.,
2011; Rohde et al., 2013; Harris et al., 2014), as well as
daily weather data (NCEI, 2015) (Table 1). All data were
aggregated to monthly climate averages. The target tem-
poral range for station data was between 1970 and 2000.
Stations with observations for at least 25 years within this
period were selected for surface fitting (see details below).
From the remaining stations, those with at least 10 years
of data between 1960 and 2010 were considered for inclu-
sion if they were located at a minimum distance from all
stations selected in the first pass. This threshold was set,
somewhat arbitrarily, at 25 km for precipitation, and 50 km
for all other climate variables to reduce redundancy and
noise in regions with high station density. These stations
where then processed to remove duplicates and included
for model fitting. In a final pass, stations were included
with at least 10 years of data (or 5 years for solar radiation)
for which only climatic averages, without exact temporal
range information available, and exceeding the distance
threshold from stations in the previous two passes. We
added these stations under the assumption that in remote
locations, low spatial data density would contribute more
to error than lack of temporal data density and/or climate
change during this period.

To facilitate interpolation we removed duplicate sta-
tions as much as possible. We identified stations dupli-
cated among datasets by checking for identical locations
(coordinates rounded to three decimal places). To detect
remaining duplicates with larger discrepancies in location,
the Levenshtein distance (number of character additions or
deletions needed to match a word) between each station’s
name and the names of its five nearest neighbours was cal-
culated. Distances less than 35% of the name length were
considered matches. Finally, all stations less than 3000 m
horizontal distance and 500 m vertical distance apart were
also marked for merging. The climate data for duplicate
stations records did not always match exactly. We averaged
climate values for stations, but assigned location informa-
tion based on the record from the dataset with the most
stringent error-checking procedures (see Table S1 for rank-
ings). Weights were assigned based on the period of record.
When period of record was not available, an intermediate
value was assigned. The number of stations for each vari-
able is reported in Table 2, and by region in Figure S1.

2.3. Covariates from satellite sensors

Global extent surfaces of mean monthly cloud cover, maxi-
mum (13:30 h local time) and minimum (1:30 h local time)
land surface temperature (LST) were compiled from Mod-
erate Resolution Imaging Spectroradiometer (MODIS)
satellite data archives using Google Earth Engine (Google
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Table 2. Climate element summary and covariates used in model building. Raw N stations indicates the number of stations
accumulated before duplicate removal. N used indicates the number of stations used in interpolations after removal of duplicates and
selection criteria. N Tier 1 indicates the number of stations meeting the target temporal range (>= 25 years between 1970 and 2000).
Covariates include mean MODIS cloud cover (Cld), distance to oceanic coast (cdist), elevation (elev), MODIS daytime land surface
temperature (LST max), nighttime land surface temperature (LST min), average of night and daytime land surface temperatures (LST

mean) and top-of-atmosphere incident solar radiation calculated from latitude (ETR).

Element Raw N stations N used N tier 1 Unit Covariates examined

Precipitation 60 419 34 542 13 763 mm Cld, cdist,elev
Minimum temperature 36 772 16 883 9967 ∘C LST min, cdist, elev
Maximum temperature 37 092 16 988 10 142 ∘C LST max, cdist, elev
Mean temperature 47 453 20 268 10 273 ∘C LST mean, cdist, elev
Vapour pressure 13 873 9541 3148 kPa Cld, cdist, elev
Wind speed 12 831 10 149 77 m s−1 Cld, cdist, elev
Solar radiation 9118 5489 2820 MJ m−2 Cld, cdist, elev, ETR

Inc., 2015). Monthly cloud cover was calculated as the
percentage of time a pixel contained a positive flag in
the cloud state band (bits 1 and 2) across all MOD09GA
images (NASA LP DAAC, 2014) from a given month from
2001 to 2013, not counting any missing values. Minimum
and maximum surface temperature were derived from
the Oxford Malaria Atlas Project Gap-Filled LST dataset
based on MODIS data (Weiss et al., 2014) which has a spa-
tial resolution of ∼5 km resolution, averaged across years
2001–2013 by month and resampled via bilinear interpo-
lation to our ∼1 km spatial resolution. This product was
used to due to the exaggerated levels of local variation
(noise) and persistent gaps found in the raw MODIS LST
data (e.g. Southeast Asia in monsoon season; Frey and
Kuenzer, 2014). For complex shorelines and islands not
captured at the Oxford dataset’s resolution, mean night
and day LST values were extracted from ∼1 km resolu-
tion MODIS MOD11A1 images, averaged by month from
2001 to 2013. An average of the (aggregated) maximum
and minimum LST values was used as a covariate for mean
temperature.

We used elevation data from the Shuttle Radar Topogra-
phy Mission (SRTM) aggregated to 30 arc-second spatial
resolution, using the median value (data available at http://
srtm.csi.cgiar.org/). We used the GTOPO30 (USGS, 1996)
database for the areas north of 60∘N and south of 60∘S
where no SRTM data was available. For each grid cell we
computed the distance to the nearest cell that was an ocean
or sea. Bays and inlets have a subdued marine effect com-
pared to open ocean, but we did not consider that.

2.4. Creation of climate surfaces

Climate variables were interpolated with thin-plate
splines using the program SPLINA from ANUSPLIN 4.4
(Hutchinson and Xu, 2013). Processing time for spline
estimates using this method is proportional to the square
of the number of data points, thus a series of models were
fit to 23 geographically overlapping subsets of station
data (hereafter ‘regions’, Figure 2) to reduce computation
time and to allow for regional model selection. Regional
surfaces were merged by weighting estimates in over-
lapping regions inversely proportional to distance from
each region’s border (New et al., 2002, Hijmans et al.,

2005). Regions were chosen to ensure at least 1 degree of
overlap, span bioclimatic zones, and to a target number
of interior stations between 1000 and 4000. The set of
regions is different for each variable (Figure 2). In the case
of precipitation, the set included some relatively small
regions (e.g. two to cover most of Mexico and three for
eastern Australia) with about 1000–2000 rainfall stations,
as well as much larger regions (Canada and parts of the
USA; Russia and areas to its west and south) with almost
4000 stations (Figure 2).

In ANUSPLIN, spline models of the N observed data
values zi are fit following the form:

zi = f
(
xi

)
+ bTyi + ei (i = 1, … , N)

where f is a smooth function of the spline independent
variables xi, b is a vector of linear coefficients for the inde-
pendent covariates yi and ei is an independent, zero mean
error term (Hutchinson and Xu, 2013). For each climate
variable, multiple model formulations were tried using dif-
ferent combinations of covariates either as independent
spline variables or linear covariates (Table 1). Elevation
(in m) was divided by 1000 following scaling recommen-
dations by Hutchinson (1995) and the distance to coastline
was hyperbolic tangent transformed prior to model fitting
to emphasize variation near the coast relative to the inte-
rior. For solar radiation, computed extraterrestrial radia-
tion (i.e. the solar radiation in the absence of atmospheric
effects) was also included as a predictor variable. Precip-
itation, radiation, vapour pressure and wind speed values
were square root transformed prior to fitting following rec-
ommendations in Hutchinson and Xu (2013). The order of
each spline surface was set at the lower limit as determined
by the program, based on the number of variables in each
model.

After initial model fitting, we looked for outliers by
examining stations with high residuals (difference between
observed and predicted values). In many cases, these sta-
tions had different units from what was reported, or wrong
location information. Where possible, these errors were
corrected. Outliers (that is, stations for which the model
residuals were very large) for which the source of possi-
ble error was not clear were only removed if climate val-
ues were highly unlikely, such as if a station’s time-series

© 2017 Royal Meteorological Society Int. J. Climatol. 37: 4302–4315 (2017)
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Figure 1. Workflow for climate surface creation. The twofold spatially stratified cross-validation approach detailed within dashed box. [Colour figure
can be viewed at wileyonlinelibrary.com].

was strongly incongruous with nearby stations, or clearly
wrong for a given location. Although scanning for large
residuals is helpful for identifying individual outlying sta-
tions, this method may not be effective for discovering
systematic errors in datasets (Hijmans et al., 2005). We
looked for such systematic discrepancies by visually com-
paring our first-pass climate surfaces with those previously
published (New et al., 1999; Hijmans et al., 2005).

2.5. Evaluation

Cross-validation of models built with spatial point datasets
using randomly selected subsets tends to be problematic
because the high spatial autocorrelation at close ranges
will lead to test-score inflation if the points are geograph-
ically clustered (Hijmans, 2012). To characterize model
performance in the absence of nearby ‘control’ stations,
models were evaluated using spatially stratified twofold
cross-validation (Figure 1). A 3∘ × 3∘ ‘checkerboard’ grid
was used to determine membership in cross-validation
groups, based on station location (either in a ‘black’ tile
or ‘white’ tile). This assured that testing data was gener-
ally far away from training data. For each region, sepa-
rate spline surfaces were fit using only stations from one
group or the other (approximately half for each fold), then

predicted values from these surfaces were compared with
observed values in the withheld group for both sets. We
computed root mean square error (RMSE) and Pearson’s
correlation coefficient (𝜌) between predicted and observed
estimates and report the average of these for the two test
data sets.

Final surfaces were created by selecting only the model
with the lowest cross-validation RMSE value for each
region, fit to the full dataset (Table S2). This resulted in
combinations of surfaces from different model formula-
tions across regions of the earth’s surface. We did not con-
sider model averaging or selecting different models for
each month.

3. Results and discussion

3.1. Station data varied in quality and distribution
through space and time

The spatial distribution of stations for all climate vari-
ables was uneven, with higher station densities gener-
ally corresponding to regions of higher population density
(Figure 2). There was an apparent effect of country-wise
investment in climate data collection and distribution, with
countries such as Mexico, Australia and Germany, for
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Figure 2. Spatial distribution of weather stations used for the different climate variables: Coloured boxes indicate boundaries of regions used for
creating spline surfaces. See Figure S1 for details. [Colour figure can be viewed at wileyonlinelibrary.com].

example, having much higher densities of precipitation sta-
tions than neighbouring countries. Regions with sparse sta-
tion data included islands in the Pacific, areas with high
elevations, Greenland and Antarctica (Figure 2).

The temporal density of available climate observations
for all variables peaked around 1980, with a sharp decline
in number of observations approaching 2010 (Figure S2),
as observed in other studies (Harris et al., 2014). For all

variables except solar radiation, the number of stations
meeting the target temporal criteria (between 1970 and
2000, ≥ 25 years of data) ranged from approximately
30–50% of stations used for interpolation (Table 2, Figure
S2). Solar radiation data had a particularly low number
of stations meeting our highest criteria (only 77 stations)
reflecting the paucity of high-quality solar radiation data
available.
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Table 3. Global twofold cross-validation statistics for selected models. RMSE indicates root-mean-squared error, MAE is mean
absolute error, and relative error was calculated as the average absolute log proportion of observed to predicted value, corresponding

approximately to percent change.

Climate variable Correlation coefficient (rho) RMSE MAE Relative error Unit

Minimum temperature 0.993 1.39 0.949 - C
Maximum temperature 0.995 1.29 0.850 - C
Average temperature 0.996 1.12 0.715 - C
Precipitation 0.861 49.46 21.290 30.4 mm
Vapour pressure 0.990 0.12 0.073 7.4 kPa
Wind speed 0.759 1.14 0.796 31.8 m s−1

Solar radiation 0.965 1.45 0.981 6.7 MJ m−2

3.2. Overall model accuracy

Global model accuracy was very high for the tempera-
ture variables, when selecting the best model from each
region. All temperature variables had a global correla-
tion coefficient (between estimated and observed values)
of 0.99 or higher and an average RMSE between 1.1 and
1.4 ∘C (Table 3). Model accuracy was also very high for
solar radiation and vapour pressure both with correlation
coefficients greater than 0.95. Accuracy was lowest for
precipitation (𝜌= 0.86) and windspeed (𝜌= 0.76). This
ordering is similar to what was reported for previously
published climate surfaces (New et al., 2002; Hijmans
et al., 2005; Table S3). Precipitation can be highly variable
in time and space and some regions have abrupt changes
(rain-shadows) whereas temperature generally follows rel-
atively simple gradients of latitude and elevation; and even
where modified by, for example, coastal effects, transitions
may be gradual (but there are exceptions to this such as
the abrupt change observed in summer temperatures along
the coast of central California). Such very strong gradients
tend to come out too smooth in the climate surfaces.

Global cross-validation statistics may obscure impor-
tant variation in prediction accuracy at high altitudes and
remote locations where there are relatively few stations to
evaluate (Figure 3). In general, prediction error increased
with station elevation and distance to nearest neighbouring
station (in the training set) for all variables (Figure 3). Poor
interpolation accuracy at higher elevations might be asso-
ciated with lower station densities (Hijmans et al., 2005;
Kilibarda et al., 2014), although more complex mountain
terrain is also a potential explanatory factor (though not
all high elevations have topographic complexity). Gener-
alized additive models (GAMs) of cross-validation errors
showed that higher elevations tended to be associated
with lower interpolation accuracy, even after accounting
for the effects of isolation and spatial variation in errors,
although this effect differed among variables. Error tended
to decline as a function of distance from the coast for
precipitation, vapour pressure, wind speed and solar radi-
ation, but not for temperature. This may be indicative of
relatively high spatial variation in these variables near the
coast, and of the lack of oceanic (buoy) weather stations.

3.3. Spatial variation in prediction error

The spatial distribution of prediction errors, as mea-
sured in RMSE (root-mean-squared error; Figure 4) and

proportional change (Figure 5) generally reflect the sen-
sitivity of interpolations to both station density and topo-
graphic complexity, with much higher uncertainty in iso-
lated, mountainous regions. For example in the continental
United States, there is a notable east–west split in terms
of RMSE for all variables, with higher RMSEs found in
the relatively remote and mountainous western part of the
country. Isolated locations on oceanic islands, Greenland
and Antarctica consistently had high RMSE values, as well
as the band of mountain ranges across southern Siberia and
the central Andes.

For variables other than temperature (precipitation,
vapour pressure, wind speed and solar radiation) abso-
lute RMSE was high in regions where the magnitude of
observed values are also high. RMSE for precipitation
was high in the tropics, and errors in wind speed were
highest on the coast, in locations with a large range and
variance of recorded wind speeds. Solar radiation and
vapour pressure also exhibited largest absolute errors near
the equator where incident radiation and humidity are
highest.

Relative error in these variables reveals a different pat-
tern, with highest values in areas with complex topogra-
phy and low station density. Relative error in precipita-
tion is notably high in dry regions (Figure 5(a)), which is
a consequence of small absolute differences in predicted
precipitation being large relative to total rainfall. How-
ever, regions such as the Western Gats of India and the
coastal north-west United States also have high relative
error rates, indicating higher uncertainty in these typically
wet and topographically complex areas. Relative error in
wind speed was very small in the great plains of the United
States, corresponding to the dense station network in this
area and flat terrain. Solar radiation error (in both absolute
and relative terms) is highest in tropical montane regions,
particularly in Peru and Ecuador. Sharp gradients in solar
radiation in tropical montane regions related to cloud cover
may drive much of this uncertainty, in spite of the inclusion
of mean cloud cover as a covariate for interpolation.

3.4. LST improved estimates of temperature

For all temperature variables, interpolations including
satellite observed LST as either a covariate or indepen-
dent spline were consistently superior to basic trivariate
splines of latitude, longitude and elevation (Table S2). The
benefit of including LST varied between regions and was
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Figure 3. Cross-validation mean and absolute errors (∘C) as a function of elevation (a, c) and isolation (b, d) for minimum temperature across all
regions. Errors from models including MODIS land surface temperature (with the lowest RMSE for each region) indicated by dashed red lines.
Shaded regions indicate 95% confidence interval for tensor product smooths. Isolation was measured as the distance between a station and its
nearest control point in the corresponding cross-validation set. Observations indicated by vertical ticks below graph. [Colour figure can be viewed

at wileyonlinelibrary.com].

particularly low in for average and maximum tempera-
ture in the eastern United States. In these cases inherent
bias in the relationship between LST and air temperature
(Figure 6) may have introduced error, perhaps because
variation or bias in LST may have been high relative to
station density and/or climatic gradients.

The relationship between LST and recorded tempera-
ture is noticeably biassed for maximum (and, by deriva-
tion average) temperature, with systematically higher and
lower LSTs recorded at high and low maximum temper-
atures, respectively (see Figure 6). This phenomenon is
attributable to increased radiative energy at the earth’s sur-
face under hot, dry conditions (in the absence of forest
canopy cover) and to exaggerated estimates due to radia-
tive cooling if LST estimates are from clear-sky days in the
winter (Hulley and Hook, 2009; Mildrexler et al., 2011;
Van De Kerchove et al., 2013).

Addition of LST as a covariable was effective for
improving estimates at high elevations and remote loca-
tions, particularly for minimum temperature (Figure 3).
Although error remained high for such locations, the
magnitude of error was reduced when satellite data was
included (Figures 3(a) and (b)). Bias at high elevations and
remote locations was also reduced by including satellite
covariates (Figures 3(c) and (d)).

Inclusion of LST data for spatial interpolation of tem-
peratures in other studies has provided mixed results.
Parmentier et al. (2014) found models using only latitude,
longitude and elevation to be consistently superior,
although LST provided fine grained structure to interpo-
lations. Kilibarda et al. (2014) found that LST improved
estimates for maximum but not minimum or average
temperature. Similarly Parmentier et al., (2015) found
that LST slightly improved daily maximum temperature
estimates in summer months in Oregon, likely due to
a stronger correlation between LST and maximum air
temperature than for elevation and air temperature during
these months. Hengl et al. (2011) and Yao and Zhang
(2013) suggested that LST data improved interpolation of
temperature data but they did not directly test the effects
of LST on model accuracy.

Despite strong correlations between LST and air temper-
ature, the amount of information LST provides for inter-
polation may be marginal relative to that of the infor-
mation provided by geographically proximal stations in
the spline model, even when those stations are located
far away. A comparison of LST estimates to naïve pre-
dictions based on the values from the nearest station
(i.e. k-nearest neighbour estimates for k= 1) suggests
that even at distances greater than 250 km away, nearest
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Figure 4. Spatially aggregated RMSE values obtained with twofold cross-validation. Values aggregated to 1.5∘ tiles (temperature and
precipitation), 2∘ tiles (vapour pressure and wind speed), and 3∘ (solar radiation) to aid visualization of sparse data. [Colour figure can be viewed at

wileyonlinelibrary.com].

neighbour values are generally more accurate than LST.
It should also be noted that there is a temporal mismatch
between the data used at stations (1970–2010) and aver-
age LST (2000–2013). LST may become more useful as
the time period over which there is data increases, par-
ticularly in places with very few weather stations and in
areas with strong gradients or topographically complex
terrain.

3.5. Cloud cover had marginal effect on precipitation
estimates

Models with cloud cover as a covariate or indepen-
dent spline variable were virtually indistinguishable from

baseline trivariate spline models of latitude, longitude and
elevation only (Table S2). Although satellite covariate
models were selected in a number of regions as superior
in terms of RMSE, the difference was marginal, usually
only around ∼1 mm improvement in precipitation RMSE
values (Table S2). There was no apparent improvement in
cross-validation error or bias for stations as either a func-
tion of elevation or isolation.

One notable improvement in accuracy occurred in the
pacific region where an interpolation based on latitude,
longitude and cloud cover had a cross-validation corre-
lation coefficient of 0.6 compared to 0.36 for a model
based on coordinates and elevation (Table S2). Climate
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Figure 5. Spatially aggregated proportional change between observed and predicted values in twofold cross-validation. Calculated as the average
absolute value of the logarithm of predicted/observed values for each grid cell in cross-validation. Values aggregated to 1.5∘ tiles (temperature and
precipitation), 2∘ tiles (vapour pressure and wind speed), and 3∘ (solar radiation) to aid visualization of sparse data. [Colour figure can be viewed at

wileyonlinelibrary.com].

Figure 6. Relationship between air temperature at weather stations and average Land surface temperature (LST) for the same locations. The dashed
line indicates a 1 : 1 relationship. The larger bias and scatter for LST day is related to higher surface temperatures under hot conditions (except under
forest canopies), and clear-sky bias for low temperatures. Correlations coefficients were 0.947 and 0.974 for maximum temperature and minimum

temperature respectively (using 200 000 observations for each). [Colour figure can be viewed at wileyonlinelibrary.com].

interpolation in this region is difficult due to very low sta-
tion density and sharply contrasting microclimates (e.g.
rainshadows on the Hawaiian islands, Figure 7). Given
these constraints the addition of cloud cover emphasized
these topographic effects and avoided over-smoothing
relationships between elevation and precipitation with sta-
tions at equivalent elevations across rain-shadows (Daly
et al., 2008).

Lack of model improvement due to inclusion of cloud
cover may be due to the noisy relation between cloud
cover and precipitation. Although precipitation generally
increased with cloud cover (Figure 8), the relationship is
extremely noisy: precipitation varies in almost five orders

of magnitude for a given level of cloud cover. This is not
entirely surprising, as conditions where average cloudiness
is high and precipitation is relatively low (for example,
winter conditions along the Pacific coast in Peru) and
vice versa (thunderstorms at the end of otherwise clear
days) are common. In addition, there are inconsistencies
in satellite cloud cover quality (Leinenkugel et al., 2013;
Wilson et al., 2014).

3.6. Average MODIS-derived cloud cover marginally
improved solar radiation estimates

Solar radiation estimates benefitted from satellite-derived
information, with the greatest reduction in
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Figure 7. (a) Cumulative annual rainfall interpolated with latitude, longitude and cloud cover as independent spline variables, (b) cumulative annual
rainfall interpolated with latitude, longitude and elevation as independent spline variables, (c) Hawai’i rainfall atlas (Giambelluca et al., 2013), and
(d) average MODIS Enhanced Vegetation Index (EVI) values on the island of Hawai’i highlighting the sharp rainshadows on the island. Note how
interpolations with cloud cover maintain sharp rainshadows (e.g. on the north of the island) but introduce artefacts related to fog or cloud pooling
(dark spots), while the spline with elevation smooths over these features and overestimates rainfall at the highest elevations. Compared to the Hawai’i
rainfall atlas, both surfaces miss the precipitation maximum of over 6000 mm on the lower northeastern (windward) slope, just below the top of the
well-known trade wind inversion. This maximum does not correlate well with the cloudiness layer used for interpolating (a). [Colour figure can be

viewed at wileyonlinelibrary.com].

Figure 8. Relationships between climate variables and cloud cover obtained from MODIS satellite images. (a) Extraterrestrial solar radiation (ETR)
minus observed solar radiation and (b) Log transformed precipitation (mm). [Colour figure can be viewed at wileyonlinelibrary.com].

root-mean-square error (RMSE) and mean absolute
error (MAE) obtained when average cloud cover was used
as a linear covariate (Table S2). However the changes
in RMSE compared to baseline models were very small
(about 2%). Extraterrestrial radiation (ETR) did not tend
to improve interpolation estimates, perhaps due to the
fact that variation in ETR is a direct function of latitude,

which was already included in the models. Splines, which
included ETR generally, tended to perform worse than a
simple model based on latitude, longitude and elevation
(Table S2).

One consequence of including satellite data in interpo-
lations was the propagation of errors related to artefacts
originating from the satellite data itself. For solar
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radiation interpolations which included cloud cover
as a covariate, predictions tended to be erroneously low
in areas with expansive white-coloured ground surfaces,
such as the Salar de Uyuni salt flat in the Bolivian Alti-
plano or the White Sands area in New Mexico, USA.
The MODIS cloud cover algorithm has a tendency to
overestimate coverage over high-albedo surfaces (Wilson
et al., 2014), which apparently occurred for salt flats in
the mean cloud coverage surfaces.

3.7. Distance from oceanic coast improved estimates
for vapour pressure and wind speed

Including satellite predictors (cloud cover) did not improve
estimates for either vapour pressure or wind speed, and
often made them worse (Table S2). Given the weak
relationship between cloud cover and these variables
(Figure 8), this is not surprising. Adding distance from
the coast, however, tended to improve estimates for these
variables (Table S2). For both variables, models consisting
of latitude, longitude, elevation and coast distance were
the most frequently selected across regions, however
differences in aggregated RMSE statistics were marginal,
rarely exceeding approximately 0.05 m s−1 and 10 Pa
over baseline models for wind speed and vapour pressure
respectively. We used simple distance to the coast as proxy
for coastal processes, and interpolation accuracy could
likely be improved with covariates that are more directly
related to coastal climatic gradients due to topography and
marine layer penetration.

4. Conclusions

The climate surfaces generated in this study represent an
expansion upon previous efforts in terms of spatial and
temporal scope, climate stations used, covariates tested
and climate variables interpolated. Final surfaces gener-
ally had high correspondence with observations, although
interpolation of some variables (e.g. precipitation and wind
speed) was not as accurate as others (notably temperature),
as was also reported in previous studies.

Adding satellite-derived data either as covariates or inde-
pendent spline variables had the greatest positive impact
on accuracy for temperature variables, particularly in
isolated and/or high elevation locations. For other climate
variables (precipitation, vapour pressure, wind speed and
solar radiation) addition of satellite surfaces had marginal
or even negative effects, which was somewhat surprising.
Lack of strong correlations between climate variables and
satellite predictors, lack of station density to resolve these
relationships across space, noise and bias within satellite
predictors, as well as inability of spline algorithms to
properly fit these relationships may be contributing to
this result. Several studies have noted diminishing returns
when increasing the number of predictor variables (such as
distance to coast, aspect) in interpolating climate surfaces,
using splines and other methods (Hutchinson, 1995; Jarvis
and Stuart, 2001a; Daly et al., 2008; Neteler, 2010; Van
De Kerchove et al., 2013; Kilibarda et al., 2014).

In our study, optimal spline model formulations and
useful variables varied from region to region. Local con-
text has a strong influence on climate processes (e.g. in
the effect of elevation on precipitation; Brunsdon et al.,
2001), and the importance of predictor variables (e.g.
cloud cover or distance to the coast) may vary region-
ally. In this study we used a novel approach by using dif-
ferent spline model formulations across different regions.
Although differences in global statistics were similar
between this method and single model formulations, this
adaptive method allowed for better model fits in remote
regions, such as with precipitation in the Pacific. Simi-
larly, Hofstra and New (2009) found that optimal model
formulation for angular-distance weighted interpolation
varied between regions and seasons. Identifying the opti-
mal delineation of regions for different interpolations is a
potential area for future research. Future work could also
look more at alternative algorithms and specifications of
the spline model and its effect on accuracy for locations
that are nearby and further away from weather stations.
Instead of selecting the best model, model averaging could
be used.

Satellite-derived predictors improved in interpolation
accuracy at the extremes of elevation and isolation (as
well as distance to coast), particularly for temperature vari-
ables. This was not always apparent in global statistics
of interpolation accuracy. Global cross-validation statistics
may obscure important differences between model formu-
lations in prediction accuracy at high altitudes and remote
locations as there are very few stations there to evaluate
(Figure 3). Although we reduced this problem by using
spatially stratified cross-validation as that increases the
average distance between model training and testing data,
the majority of the testing stations were still located near
populated (and developed) regions of the world, which are
associated with high station densities and, consequently,
high interpolation accuracies.

While there is significant emphasis on uncertainty for
future climate model projections (e.g. Foley, 2010), much
less attention has been paid to uncertainty in spatially
extensive estimates of current climate (the climate of the
recent past) at scales relevant for environmental research.
Poor climate station data quality affects resulting cli-
mate surfaces and consumes resources for quality-control
efforts. Moreover, the need to aggregate vast amounts of
climate data from disparate sources is an added hurdle
for progress and comparisons across modelling studies,
since climate surfaces will inherently vary based on under-
lying data. Previous efforts to standardize and compile
global climatological data are noteworthy, however these
efforts have tended to be limited to select institutions or
groups of researchers. For these reasons we appeal for
the creation of a cooperatively managed, standardized and
open-source database of climatological data, analogous to
highly successful efforts for other types of global data such
as the Global Biodiversity Information Facility (GBIF;
http://www.gbif.org/) database.

The fact that most of our climate surface estimates were
only marginally improved by use of satellite covariates
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highlights the importance having a dense, high-quality net-
work of climate station data. It has been noted that for
standard spatial interpolation methods, there appears to
be a limit to which additional spatial covariates improve
model estimates (Jarvis and Stuart, 2001a, 2001b). For the
data and methods employed in the creation of these sur-
faces, inherent noise in satellite spectral data and lack of
correspondence with on-the-ground measurements likely
contributed to this unexpected result. However, the tempo-
ral record of MODIS is still relatively short, and we did not
explore all available satellite data, and more satellite prod-
ucts will become available at high spatial or temporal res-
olutions. These products, in combination with modelling
methods appropriately sensitive to local context should
be evaluated for improved global interpolations. Improv-
ing the quality of precipitation estimates is particularly
important, and future work could evaluate the use of data
from the Tropical Rainfall Measuring Mission (TRMM)
and Global Precipitation Measurement (GPM) satellites as
covariates.
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